

Written calculation

Our calculation policy supports children's development through the concrete, pictorial and abstract (CPA) stages of mathematical learning. It provides teachers with a clear framework for progression in maths across the whole primary age range.

The expected methods, models and apparatus which are suitable at each level of a child's mathematical understanding are outlined for each of the 4 operations.
By the end of Year 6 children are equipped with mental, written and calculator methods that they understand and can use correctly. When faced with a calculation, children are able to decide which method is most appropriate and have strategies to check its accuracy.
At whatever stage in their learning, and whatever method is being used, children's strategies must still be underpinned by a secure and appropriate knowledge of number facts, along with those mental skills that are needed to carry out the process and judge if it was successful.

The overall aim is that when children leave our schools they:

- have a secure knowledge of number facts and a good understanding of the four operations;
- are able to use this knowledge and understanding to carry out calculations mentally and to apply general strategies when using one-digit and two-digit numbers and particular strategies to special cases involving bigger numbers;
- make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads;
- have an efficient, reliable, written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally;
- use a calculator effectively, using their mental skills to monitor the process, check the steps involved and decide if the numbers displayed make sense.

Progression towards a standard written method of calculation

INTRODUCTION

The PA maths programme provides a structured and systematic approach to teaching number There is a considerable emphasis on teaching mental calculation strategies. Up to the age of 7 (Year 2) informal written recording should take place regularly and is an important part of learning and understanding. More formal written methods should follow only when the child is able to use a wide range of mental calculation strategies.

REASONS FOR USING WRITTEN METHODS

- To aid mental calculation by writing down some of the numbers and answers involved
- To make clear a mental procedure for the pupil
- To help communicate methods and solutions
- To provide a record of work to be done
- To aid calculation when the problem is too difficult to be done mentally
- To develop and refine a set of rules for calculation

STANDARD VOCABULARY FOR EACH OPERATION

$+$

Get some more, real story, maths story, same value different appearance, tens, units, hundreds, thousands, place value, digit, value, combine, sum total, add, addition, more, plus, increase, su, total, altogether, score, double, near double, how many more to make...?, equals, sign, regroup, tens boundary, hundreds boundary, units boundary, tenths boundary, inverse, fair swap

X

Lots of, groups of, I love that number- how many times? times, product, multiply, multiplied by, multiple of, once, twice, three times, four times, five times, ... ten times, repeated addition, array, row, column, double, regroup, fair swap, invers

Get ready to take away, real story, maths story subtract, take away, minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is.. than...? how much more/less is...?, equals, sign, tens boundary, hundreds boundary, units boundary, tenths boundary, inverse, regroup, fair swap
\square
Halve, share, share equally, one each, two each three each..., group in pairs, threes... tens, equal groups of, divide, divided by, divided into divisible by, remainder, factor, quotient, inverse, regroup, fair swap, inverse

We have developed a consistent approach to the teaching of written calculation methods. This will establish continuity and progression throughout the school.

Mental methods will be established. These will be based on a solid understanding of place value in number and will include the following:
i. Remembering number facts and recalling them without hesitation. e.g. pairs of numbers which make 10
Doubles and halves to 20
ii. Using known facts to calculate unknown
facts. e.g. $6+6=12$ therefore $6+7=13$
$24+10=34$ therefore $24+9=33$
iii. Understanding and using relationships between addition \& subtraction to find answers and check results.
e.g. $14+6=20$ therefore $20-6=14$
iv. Having a repertoire of mental strategies to solve calculations e.g. doubles/near doubles
Bridging 10/bridging 20
Adding 9 by +10 and -1
v. Making use of informal jottings such as blank number lines to assist in calculations with larger numbers e.g. $83-18=65$.

vi. Solving one-step word problems (either mentally or with jottings) by identifying which operation to use, drawing upon their knowledge of number bonds and explaining their reasoning
vii. Beginning to present calculations in a horizontal format and explain mental steps using numbers, symbols or words
viii. Learning to estimate/approximate first e.g. $29+30$ (round up to nearest 10 , the answer will be near to 60)

Place value will be taught mentally first from Reception class where number tracks are used, progressing to number lines (to 10 or 20 as appropriate) in Years 1 and 2.
The empty number line will then be introduced to aid calculations.
Subtraction will be taught by counting on and counting back depending on the numbers. Numbers such as $10,100,1000$ will be called Landmark Numbers.

WHEN ARE CHILDREN READY FOR WRITTEN CALCULATIONS?
Addition and subtraction

- Do they know addition and subtraction facts to 20 ?
- Do they understand place value and can they partition numbers?
- Can they add three single digit numbers mentally?
- Can they add and subtract any pair of two digit numbers mentally?
- Can they explain their mental strategies orally and record them using informal jottings?

Multiplication and division

- Do they know the $2,3,4,5$ and 10 time table
- Do they know the result of multiplying by 0 and 1 ?
- Do they understand 0 as a placeholder?
- Can they multiply two and three digit numbers by 10 and 100 ?
- Can they double and halve two digit numbers mentally?
- Can they use multiplication facts they know to derive mentally other multiplication facts that they do not know?
- Can they explain their mental strategies orally and record them using informal jottings?

The above lists are not exhaustive but are a guide for the teacher to judge when a child is ready to move from informal to formal methods of calculation.

Year 1
Know that addition can be done in any order.

$2+5=7$
$5+2=7$

Put the biggest number first and count on.

Know doubles of numbers

Year 2

Add two single digit numbers that bridge 10

$8+8=15$

Encourage children to partition numbers to use bonds to ten.
Children need to be able to partition numbers in ways other than into tens and ones to help them make multiples of ten by adding in steps.

The empty number line helps to record the steps on the way to calculating the total

Written methods for addition

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence. Children are entitled to be taught and to acquire secure mental methods of calculation and one efficient written method of calculation for each of the four operations (addition, subtraction, multiplication and division) which they know they can rely on when mental methods are not appropriate.

Record steps in addition using partitioning:

$$
\begin{aligned}
& 47+76=40+70+7+6=110+13=123 \\
& 47+76=47+70+6=117+6=123
\end{aligned}
$$

Addition facts for with a tota

Partitioned numbers are then written under one another:
for all pairs of
numbers with a total of up to

CONCRETE APPROACHES
subtraction facts
Doubles of numbers to at least 10 and multiples of 10 to 100

Identify near doubles, using doubles already known $(40+41)$

Add 9 or 11 to by adding 10 and then adding or subtracting 1
Bridge 10 when adding a single-digit number

25

$$
+
$$

47

Mr|TMT MTMTMT1 M191919M M1919194 Mrisiris M1919191 Mr Mr Min \downarrow

Written methods for subtraction

EYFS
Begin to count backwards in familiar contexts such as number rhymes or stories.

EYFS/YEAR 1
Continue the count back in 1 s from any given number.
$10,9,8,77$.

Begin to relate subtraction to taking away

Find one less than a number up to 10

YEAR 1

Count back in tens

Compare 2 sets to find the numerical difference.

Year 1
Understand the operation of subtraction and use related vocabulary.
Subtract numbers when solving problems involving up to 10 objects in a range of contexts.

-00000000000000~~
 -00000000000~~~

Written methods for

subtraction of whole numbers

These notes show the stages in building up to using an efficient method for subtraction of two-digit and three-digit whole numbers by the end of Year 4

Mental calculation
strategies

- Counting back in 3 s and 4 s

Know addition facts for all pairs of numbers to 10 and
corresponding subtraction facts
Find a small difference by counting up from the smaller number

Subtract $9 / 11$ by adding 10 and adding/subtracting one

Counting back in small steps from a small two-digit number

Know all addition facts for eac number to 20 and corresponding subtractions
Find a small difference by counting up
Subtract a near multiple of ten from a two-digit number

Use known number facts and place value to subtract mentally

Stage 1: The empty number line
$\xrightarrow[2730]{+3}$

or

178180

Leading to: 5,463-2,657
$\xrightarrow[2,657]{+343} \xrightarrow[2,657]{+2,463}$

Stage 3 : Decomposition
CONCRETE APPROACHES

1. $563-241$

Leading to

$$
\begin{array}{r|c|c}
4 & 15 & 1 \\
5 & 6 & 3 \\
-\quad 2 & 7 & 8 \\
\hline 2 & 8 & 5 \\
\hline
\end{array}
$$

Understand multiplication as an array

Understand how to represent arrays on a number line
Pattern work on a 100 square helps children begin to recognise multiples and rules of divisibility.

2 hops of 4

Know by heart facts for the 2, 5 and 10 multiplication tables.

Written methods for multiplication

These notes show the stages in building up to using an efficient method for two-digit by one-digit
multiplication by the end of Year 4, two-digit by two-digit multiplication by the end of Year 5, and three-digit
by two-digit multiplication by the end of Year 6.

Division

EYFS
Solve problems by sharing objects in a practical or role play context.

EYFS
Count back in 10 s.

NB: Counting on is a powerful tool for mental calculation but does not lead onto written calculation for division.

EYFS
Solve practical problems by sharing into equal groups.

Count back in 5 s .

Year 1
Know halves to 20.

Half of 8 is 4

Written methods for division

These notes show the stages in building up to long division in 6 - first long division $\mathrm{TU} \div \mathrm{U}$, extending to
$\mathrm{HTU} \div \mathrm{U}$, then $\mathrm{HTU} \div \mathrm{TU}$, and then short division $\mathrm{HTU} \div \mathrm{U}$

Informal to standard written calculations

year	Addition
3	TU + TU developing to HTU + TU or HTU + HTU
	1. Use of number lines to count on
	2. Horizontal expanded method, using partitioning
	3. Vertical expanded method adding most (or least)

3. Vertical expanded method adding most (or least) significant digit first

4

HTU + TU then HTU + HTU

1. Vertical expanded method adding most significant digit first
2. Vertical expanded method adding least significant digit first
3. Leading to regrouping below the line
4. Calculations extended to include addition of two or more 3-digit sums of money
5
5. Vertical expanded method adding least significant digit first
6. Compact written method regrouping below the line
7. Calculations extended to include addition of two or more decimal fractions, with up to three digits and the same number of decimal places, in vertical format

6
ThHTU + ThHTU and then any number of digits

1. Compact written method regrouping below the lin
2. Calculations extended to include addition of two or more decimal fractions with up to four digits \& either one or two decimal places

Subtraction	Multiplication	Division
TU - TU, developing to HTU - TU or HTU - HTU 1. Use of number line to count up 2. Use of number line to take too much and add back 3. Use of partitioned vertical form (expanded form) 4. Decomposition using expanded form	- Repeated addition - Describing an array - Concrete written - Scaling	- Grouping - Sharing - Remainders
HTU - TU then HTU - HTU 1. Decomposition using expanded form 2. Decomposition using compact form 3. Calculations extended to include the difference between two 3-digit sums of money	TU x U 1. Grid method (TU x U) 2. Standard expanded short multiplication (TU x U) 3. Compact short multiplication (TU $\times \mathrm{U}$)	$T U \div U$ 1. $T U \div U$ - using chunking
HTU - HTU, then ThHTU - ThHTU 1. Decomposition using expanded form 2. Decomposition using compact form 3. Calculations extended to include subtraction of decimals, with up to 3 digits \& the same number of decimal places, in expanded format leading to vertical format	HTU x U and TU x TU 1. Grid method (HTU $x U$ \& $T U \times T U$) 2. Standard expanded short multiplication ($\mathrm{HTU} \times \mathrm{U}$) 3. Compact short multiplication (HTU $\times \mathrm{U}$) 4. Long multiplication (TU \times TU) 5. Calculations extended to include multiplying decimal fractions with one decimal place by a single digit	$\mathrm{HTU} \div \mathrm{U}$ 1. $\mathrm{HTU} \div \mathrm{U}$ - using chunking 2. $\mathrm{HTU} \div \mathrm{U}$ - efficient chunking
ThHTU - ThHTU and then any number of digits 1. Decomposition using compact form 2. Calculations extended to include subtraction of two or more decimal fractions with up to 3 digits \& either one or two decimal places in vertical format	ThHTU x U and HTU x TU 1. Grid method (ThHTU $x \cup \& H T U \times T U$) 2. Standard expanded short multiplication (ThHTU x U) 3. Compact short multiplication (ThHTU $\times \mathrm{U}$) 4. Long multiplication (HTU \times TU) 5. Calculations extended to include multiplying decimal fractions with two decimal places by a single digit	HTU \div TU 1. $\mathrm{HTU} \div \mathrm{TU}$ - using chunking 2. HTU \div TU - efficient chunking 3. HTU \div TU - efficient standard method 4. Extend to decimal fractions with up to two decimal places

CONCRETE PICTORIAL

(unninaty

1. Children should always estimate first
2. Always check the answer, preferably using a different method eg. the inverse operation.
3. Always decide first whether a mental method is appropriate.
4. Pay attention to language - refer to the actual value of digits.
5. Children who make persistent mistakes should return to the method that they can use accurately until ready to move on.
6. Children need to know number and multiplication facts by heart.
7. Discuss errors and diagnose problem and then work through problem - do not simply re-teach the method
8. When revising or extending to harder numbers, refer back to expanded methods. This helps reinforce understanding and reminds children that they have an alternative to fall back on if they are having difficulties.

